

    
      
          
            
  
Dandelion

A quite light weight deep learning framework, on top of Theano, offering better balance between flexibility and abstraction


Featuring


	Aiming to offer better balance between flexibility and abstraction.


	Easy to use and extend, support for any neural network structure.


	Loose coupling, each part of the framework can be modified independently.






	More like a handy library of deep learning modules.


	Common modules such as CNN, LSTM, GRU, Dense, and common optimization methods such as SGD, Adam, Adadelta, Rmsprop are ready out-of-the-box.






	Plug & play, operating directly on Theano tensors, no upper abstraction applied.


	Unlike previous frameworks like Keras, Lasagne, etc., Dandelion operates directly on tensors instead of layer abstractions, making it quite easy to plug in 3rd part defined deep learning modules (layer defined by Keras/Lasagne) or vice versa.











Why Another DL Framework


	The reason is more about the lack of flexibility for existing DL frameworks, such as Keras, Lasagne, Blocks, etc.


	By “flexibility”, we means whether it is easy to modify or extend the framework.


	The famous DL framework Keras is designed to be beginner-friendly oriented, at the cost of being quite hard to modify.


	Compared to Keras, another less-famous framework Lasagne provides more flexibility. It’s easier to write your own layer by Lasagne for small neural network, however, for complex neural networks it still needs quite manual works because like other existing frameworks, Lasagne operates on abstracted ‘Layer’ class instead of raw tensor variables.











Project Layout

Python Module     | Explanation
----------------- | ----------------
module            | all neual network module definitions
functional        | operations on tensor with no parameter to be learned
initialization    | initialization methods for neural network modules
activation        | definition of all activation functions
objective         | definition of all loss objectives
update            | definition of all optimizers
util              | utility functions







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  Dandelion's activation module is mostly inherited from Lasagne [https://github.com/Lasagne/Lasagne] except for the softmax() activation.

You're recommended to refer to Lasagne.nonlinearities document [http://lasagne.readthedocs.io/en/latest/modules/nonlinearities.html] for the following activations:


	sigmoid


	tanh


	relu


	softplus


	ultra_fast_sigmoid


	ScaledTanH


	leaky_rectify


	very_leaky_rectify


	elu


	SELU


	linear


	identity







softmax

Apply softmax to the last dimension of input x

softmax(x)






	x: theano tensor of any shape








          

      

      

    

  

    
      
          
            
  
pool_1d

Pooling 1 dimension along the given axis, support for any dimensional input.

pool_1d(x, ws=2, ignore_border=True, stride=None, pad=0, mode='max', axis=-1)






	ws: scalar int. Factor by which to downsample the input


	ignore_border: bool. When True, dimension size=5 with ws=2 will generate a dimension size=2 output. 3 otherwise.


	stride: scalar int. The number of shifts over rows/cols to get the next pool region. If stride is None, it is considered equal to ws (no overlap on pooling regions), eg: stride=1 will shifts over one row for every iteration.


	pad: pad zeros to extend beyond border of the input


	mode: {max, sum, average_inc_pad, average_exc_pad}. Operation executed on each window. max and sum always exclude the padding in the computation. average gives you the choice to include or exclude it.


	axis: scalar int. Specify along which axis the pooling will be done









pool_2d

Pooling 2 dimension along the last 2 dimensions of input, support for any dimensional input with ndim>=2.

pool_2d(x, ws=(2,2), ignore_border=True, stride=None, pad=(0,0), mode='max')






	ws: scalar tuple. Factor by which to downsample the input


	ignore_border: bool. When True, (5,5) input with ws=(2,2) will generate a (2,2) output. (3,3) otherwise.


	stride: scalar tuple. The number of shifts over rows/cols to get the next pool region. If stride is None, it is considered equal to ws (no overlap on pooling regions), eg: stride=(1,1) will shifts over one row and one column for every iteration.


	pad: pad zeros to extend beyond border of the input


	mode: {max, sum, average_inc_pad, average_exc_pad}. Operation executed on each window. max and sum always exclude the padding in the computation. average gives you the choice to include or exclude it.









pool_3d

Pooling 3 dimension along the last 3 dimensions of input, support for any dimensional input with ndim>=3.

pool_3d(x, ws=(2,2,2), ignore_border=True, stride=None, pad=(0,0,0), mode='max')






	ws: scalar tuple. Factor by which to downsample the input


	ignore_border: bool. When True, (5,5,5) input with ws=(2,2,2) will generate a (2,2,2) output. (3,3,3) otherwise.


	stride: scalar tuple. The number of shifts over rows/cols to get the next pool region. If stride is None, it is considered equal to ws (no overlap on pooling regions).


	pad: pad zeros to extend beyond border of the input


	mode: {max, sum, average_inc_pad, average_exc_pad}. Operation executed on each window. max and sum always exclude the padding in the computation. average gives you the choice to include or exclude it.








          

      

      

    

  

    
      
          
            
  Dandelion's initialization module is mostly inherited from Lasagne [https://github.com/Lasagne/Lasagne].
You're recommended to refer to Lasagne.init document [http://lasagne.readthedocs.io/en/latest/modules/init.html] for the details.



          

      

      

    

  

    
      
          
            
  
Module

Root class of all network modules, you'd always subclass this for a new module

class Module(name=None, work_mode='inference')






	name: module name, optional. If you don't specify the module name, it will be auto-named if this module is a sub-module of another module.


	work_mode: working mode, optional. Only used for the unified calling interface, check "Tutorial I" for detailed explanation.




.params                  = []  
.self_updating_variables = [] 
.sub_modules             = OrderedDict()
.name                    = name
.work_mode               = work_mode






	params: contains all the parameters which should be updated by optimizer (submodule excluded)


	self_updating_variables: contains all the parameters which are updated by user specified expression (submoduluded)


	sub_modules: contains all the sub-modules




.register_param(x, shape=None, name=None)
.register_self_updating_variable(x, shape=None, name=None)





Register and possibly initialize a parameter tensor. Parameters to be updated by optimizer should be registered with register_param() meanwhile parameters self-updated should be registerd with register_self_updating_variable()


	x: Theano shared variable, expression, numpy array or callable. Initial value, expression or initializer for this parameter.


	shape: tuple of int, optional. A tuple of integers representing the desired shape of the parameter tensor.


	name: str, optional. A descriptive name for the parameter variable. If not specified, it'll be auto-named as [1]_[2]@[3], in which 1 is the variable instance name, 2 is the class name, and 3 is the module instance name




.collect_params(include=None, exclude=None, include_self=True)





Collect parameters to be updated by optimizer.


	include: sub-module keys, means which sub-module to include


	exclude: sub-module keys, means which sub-module to exclude


	include_self: whether include self.params


	return: list of parameters, in the same order of sub-modules




.collect_self_updates(include=None, exclude=None, include_self=True)





Collect all update from self_updating_variables.


	include: sub-module keys, means which sub-module to include


	exclude: sub-module keys, means which sub-module to exclude


	include_self: whether include self.self_updating_variables


	return: update dict, in the same order of sub-modules




.get_weights()





Collect all module weights (including submodules)


	return: list of tuples with format [variable.value, variable.name]




.set_weights(module_weights, check_name='ignore')





Set module weights by default order (same order with .get_weights())


	module_weights: same with the return of .get_weights()


	check_name: ignore|warn|raise. What to do if a weight's name does not match its corresponding variable's name.




.set_weights_by_name(module_weights, unmatched='ignore')





Set module weights by matching name.


	module_weights: same with the return of .get_weights()


	unmatched:  ignore|warn|raise. What to do if there remain weights or module variables unmatched.









Dropout

Sets values to zero with probability p

class Dropout(seed=None, name=None)






	seed: the random seed (integer) for initialization, optional




.forward(input, p=0.5, shared_axes=(), rescale=True)






	p: ﬂoat or scalar tensor. The probability of setting a value to zero


	shared_axes: tuple of int. Axes to share the dropout mask over. By default, each value can be dropped individually. shared_axes=(0,) uses the same mask across the batch. shared_axes=(2, 3) uses the same mask across the spatial dimensions of 2D feature maps.


	rescale: bool. If True (the default), scale the input by 1 / (1 - p) when dropout is enabled, to keep the expected output mean the same.




.predict( input, *args, **kwargs)





dummy interface, does nothing but returns the input unchanged.

Note: Theano uses self_update mechanism to implement pseudo randomness, so to use Dropout class, the followings are recommened:


	(1) define different instance for each droput layer


	(2) compiling function with no_default_updates=False









GRU

Gated Recurrent Unit RNN.

class GRU(input_dims, hidden_dim, initializer=init.Normal(0.1), grad_clipping=0, 
          hidden_activation=tanh, learn_ini=False, truncate_gradient=-1, name=None)






	input_dims: integer or list of integers. If scalar, input dimension = input_dims; if list of integers, input dimension = sum(input_dims), and GRU’s parameter W_in will be initialized unevenly by integers specified in input_dims


	hidden_dim: dimension of hidden units, also the output dimension


	grad_clipping: float. Hard clip the gradients at each time step. Only the gradient values above this threshold are clipped to the threshold. This is done during backprop. Some works report that using grad_normalization is better than grad_clipping


	hidden_activation: nonlinearity applied to hidden variable, i.e., h = hidden_activation(cell). It's recommended to use tanh as default.


	learn_ini: whether learn initial state


	truncate_gradient: if not -1, BPTT will be used, gradient back-propagation will be performed at most truncate_gradient steps




.forward(seq_input, h_ini=None, seq_mask=None, backward=False, only_return_final=False, return_final_state=False)






	seq_input: tensor with shape (T, B, D) in which D is the input dimension


	h_ini: initialization of hidden cell, (B, hidden_dim)


	seq_mask: mask for seq_input


	backward: bool. Whether scan in backward direction


	only_return_final: bool. If True, only return the ﬁnal sequential output (e.g. for tasks where a single target value for the entire sequence is desired). In this case, Theano makes an optimization which saves memory.


	return_final_state: If True, the final state of hidden and cell will be returned, both (B, hidden_dim)




.predict = .forward










LSTM

Long Short-Term Memory RNN

class LSTM( input_dims, hidden_dim, peephole=True, initializer=init.Normal(0.1), grad_clipping=0, 
            hidden_activation=tanh, learn_ini=False, truncate_gradient=-1, name=None)






	input_dims: integer or list of integers. If scalar, input dimension = input_dims; if list of integers, input dimension = sum(input_dims), and LSTM’s parameter W_in will be initialized unevenly by integers specified in input_dims


	hidden_dim: dimension of hidden units, also the output dimension


	peephole: bool. Whether add peephole connection.


	grad_clipping: float. Hard clip the gradients at each time step. Only the gradient values above this threshold are clipped to the threshold. This is done during backprop. Some works report that using grad_normalization is better than grad_clipping


	hidden_activation: nonlinearity applied to hidden variable, i.e., h = hidden_activation(cell). It's recommended to use tanh as default.


	learn_ini: whether learn initial state


	truncate_gradient: if not -1, BPTT will be used, gradient back-propagation will be performed at most truncate_gradient steps




.forward(seq_input, h_ini=None, c_ini=None, seq_mask=None, backward=False, only_return_final=False, return_final_state=False)






	seq_input: tensor with shape (T, B, D) in which D is the input dimension


	h_ini: initialization of hidden state, (B, hidden_dim)


	c_ini: initialization of cell state, (B, hidden_dim)


	seq_mask: mask for seq_input


	backward: bool. Whether scan in backward direction


	only_return_final: bool. If True, only return the ﬁnal sequential output (e.g. for tasks where a single target value for the entire sequence is desired). In this case, Theano makes an optimization which saves memory.


	return_final_state: If True, the final state of hidden and cell will be returned, both (B, hidden_dim)




.predict = .forward










GRUCell

Gated Recurrent Unit RNN Cell

class GRUCell(input_dims, hidden_dim, initializer=init.Normal(0.1), grad_clipping=0, 
              hidden_activation=tanh, name=None)






	input_dims: integer or list of integers. If scalar, input dimension = input_dims; if list of integers, input dimension = sum(input_dims), and GRUCell’s parameter W_in will be initialized unevenly by integers specified in input_dims


	hidden_dim: dimension of hidden units, also the output dimension


	grad_clipping: float. Hard clip the gradients at each time step. Only the gradient values above this threshold are clipped to the threshold. This is done during backprop. Some works report that using grad_normalization is better than grad_clipping


	hidden_activation: nonlinearity applied to hidden variable, i.e., h = hidden_activation(cell). It's recommended to use tanh as default




.forward(input, h_pre, mask=None)






	input: tensor with shape (B, D) in which D is the input dimension


	h_pre: initialization of hidden cell, (B, hidden_dim)


	mask: mask for input




.predict = .forward










LSTMCell

Long Short-Term Memory RNN Cell

class LSTMCell(input_dims, hidden_dim, peephole=True, initializer=init.Normal(0.1), grad_clipping=0, 
               hidden_activation=tanh, name=None)






	input_dims: integer or list of integers. If scalar, input dimension = input_dims; if list of integers, input dimension = sum(input_dims), and LSTM’s parameter W_in will be initialized unevenly by integers specified in input_dims


	hidden_dim: dimension of hidden units, also the output dimension


	peephole: bool. Whether add peephole connection.


	grad_clipping: float. Hard clip the gradients at each time step. Only the gradient values above this threshold are clipped to the threshold. This is done during backprop. Some works report that using grad_normalization is better than grad_clipping


	hidden_activation: nonlinearity applied to hidden variable, i.e., h = hidden_activation(cell). It's recommended to use tanh as default.




.forward(input, h_pre, c_pre, mask=None)






	input: tensor with shape (B, D) in which D is the input dimension


	h_pre: initialization of hidden state, (B, hidden_dim)


	c_pre: initialization of cell state, (B, hidden_dim)


	mask: mask for input




.predict = .forward










Conv2D

Convolution 2D

class Conv2D(in_channels, out_channels, kernel_size=(3,3), stride=(1,1), pad='valid', 
             dilation=(1,1), num_groups=1, W=init.GlorotUniform(), b=init.Constant(0.), 
             flip_filters=True, convOP=tensor.nnet.conv2d, input_shape=(None,None), untie_bias=False, name=None)






	input_channels: int. Input shape of Conv2D module is (B, input_channels, H_in, W_in)


	out_channels: int. Output shape of Conv2D module is (B output_channels, H_out, W_out)


	kernel_size: int scalar or tuple of int. Convolution kernel size


	stride: Factor by which to subsample the output


	pad: same/valid/full or 2-element tuple of int. Control image border padding.


	dilation: factor by which to subsample (stride) the input.


	num_groups: Divides the image, kernel and output tensors into num_groups separate groups. Each which carry out convolutions separately


	W: initialization of filter bank, shape = (out_channels, in_channels, kernel_size[0], kernel_size[1])


	b: initialization of convolution bias, shape = (out_channels,) if untie_bias is False; otherwise shape = (out_channels, H_out, W_out)


	flip_filters: If True, will flip the filter rows and columns before sliding them over the input. This operation is normally referred to as a convolution, and this is the default. If False, the filters are not flipped and the operation is referred to as a cross-correlation.


	input_shape: optional, (H_in, W_in)


	untie_bias: If False, the module will have a bias parameter for each channel, which is shared across all positions in this channel. As a result, the b attribute will be a vector (1D). If True, the module will have separate bias parameters for each position in each channel. As a result, the b attribute will be a 3D tensor.









ConvTransposed2D

Transposed convolution 2D. Also known as fractionally-strided convolution or deconvolution (although it is not an actual deconvolution operation)

class ConvTransposed2D(in_channels, out_channels, kernel_size=(3,3), stride=(1,1), pad='valid', 
                       dilation=(1,1), num_groups=1, W=init.GlorotUniform(), b=init.Constant(0.), 
                       flip_filters=True, input_shape=(None,None), untie_bias=False, name=None)





All the parameters have the same meanings with Conv2D module. In fact, the transposed convolution is equal to upsampling the input then doing conventional convolution. However, for efficiency purpose, here the transposed convolution is implemented via Theano’s AbstractConv2d_gradInputs as what is done in Lasagne.






Dense

Fully connected network, also known as affine transform. Apply affine transform Wx+b to the last dimension of input.The input of Dense can have any dimensions, and note that we do not apply any activation to its output by default

class Dense(input_dims, output_dim, W=init.GlorotUniform(), b=init.Constant(0.), name=None)






	input_dims: integer or list of integers. If scalar, input dimension = input_dims; if list of integers, input dimension = sum(input_dims), and Dense’s parameter W will be initialized unevenly by integers specified in input_dims


	output_dim: output dimension


	W, b: parameter initialization









Embedding

Word/character embedding module.

class Embedding(num_embeddings, embedding_dim, W=init.Normal(), name=None)






	num_embeddings: the Number of different embeddings


	embedding_dim: output embedding vector dimension









BatchNorm

Batch normalization module.

class BatchNorm(input_shape=None, axes='auto', eps=1e-4, alpha=0.1, beta=init.Constant(0), gamma=init.Constant(1), 
                mean=init.Constant(0), inv_std=init.Constant(1), mode='high_mem', name=None)






	input_shape: Tuple or list of ints or tensor variables. Input shape of BatchNorm module, including batch dimension.


	axes: auto or tuple of int. The axis or axes to normalize over. If auto (the default), normalize over all axes except for the second: this will normalize over the minibatch dimension for dense layers, and additionally over all spatial dimensions for convolutional layers.


	eps: Small constant 𝜖 added to the variance before taking the square root and dividing by it, to avoid numerical problems


	alpha: Coefficient for the exponential moving average of batch-wise means and standard deviations computed during training; the closer to one, the more it will depend on the last batches seen


	mode: low_mem or high_mem. Specify which batch normalization implementation that will be used. As no intermediate representations are stored for the back-propagation, low_mem implementation lower the memory usage, however, it is 5-10% slower than high_mem implementation. Note that 5-10% computation time difference compare the batch normalization operation only, time difference between implementation is likely to be less important on the full model fprop/bprop.









Center

Estimate class centers by moving averaging.

class Center(feature_dim, center_num, alpha=0.1, center=init.GlorotUniform(), name=None)






	feature_dim: feature dimension


	center_num: class center number


	alpha: moving averaging coefficient, the closer to one, the more it will depend on the last batches seen


	center: initialization of class centers, should be in shape of (center_num, feature_dim)




.forward(features, labels)






	features: batch features, from which the class centers will be estimated


	labels: features's corresponding class labels


	return: centers estimated




.predict()






	return: centers stored









ChainCRF

Linear chain CRF layer for sequence labeling.

class ChainCRF(state_num, transitions=init.GlorotUniform(), p_scale=1.0, l1_regularization=0.001, 
               state_pad=True, transition_matrix_normalization=True,  name=None)






	state_num: number of hidden states. If state_pad is True, then the actual state number inside CRF will be state_num + 2.


	transitions: initialization of transition matrix, in shape of (state_num+2, state_num+2) if state_pad is True, else (state_num, state_num)


	p_scale: probability scale factor. The input of this module will be multiplied by this factor.


	l1_regularization: L1 regularization coefficient for transition matrix


	state_pad: whether do state padding. CRF requires two additional dummy states, i.e., <bos> and <eos> (beginning and endding of sequence). The ChainCRF module can pad the state automatically with these two dummy states, or you can incorporate these two states in module input. In the latter case, set state_pad to False.


	transition_matrix_normalization: whether do row-wise normalization of transition matrix. You may expect that each row of the transition matrix should sum to 1.0, and to do this, set this flag to True.




.forward(x, y)





Compute CRF loss


	x: output from previous RNN layer, in shape of (B, T, N)


	y: tag ground truth, in shape of (B, T), int32


	return: loss in shape of (B,) if l1_regularization disabled, else in shape of (1,)




.predict(x)





CRF Viterbi decoding


	x: output from previous RNN layer, in shape of (B, T, N)


	return: decoded sequence








          

      

      

    

  

    
      
          
            
  Dandelion's objective module is mostly inherited from Lasagne [https://github.com/Lasagne/Lasagne] except for the CTC (Connectionist Temporal Classification) objective.

You're recommended to refer to Lasagne.objectives document [http://lasagne.readthedocs.io/en/latest/modules/objectives.html] for the following objectives:


	binary_crossentropy


	categorical_crossentropy


	squared_error


	binary_hinge_loss


	multiclass_hinge_loss


	binary_accuracy


	categorical_accuracy







ctc_cost_logscale

CTC cost calculated in log scale. This CTC objective is written purely in Theano, so it runs on both Windows and Linux. Theano itself also has a wrapper [http://deeplearning.net/software/theano/library/tensor/nnet/ctc.html] for Baidu's warp-ctc library, which requires separate install and only runs on Linux.

ctc_cost_logscale(seq, sm, seq_mask=None, sm_mask=None, blank_symbol=None, align='pre')






	seq: query sequence, shape of (L, B), float32-typed


	sm: score matrix, shape of (T, C+1, B), float32-typed


	seq_mask: mask for query sequence, shape of (L, B), float32-typed


	sm_mask: mask for score matrix, shape of (T, B), float32-typed


	blank_symbol: scalar, = C by default


	align: string, {'pre'/'post'}, indicating how input samples are aligned in one batch


	return: negative log likelihood averaged over a batch









ctc_best_path_decode

Decode the network output scorematrix by best-path-decoding scheme.

ctc_best_path_decode(Y, Y_mask=None, blank_symbol=None)






	Y: output of a network, with shape (B, T, C+1)


	Y_mask: mask of Y, with shape (B, T)


	return: result sequence of shape (T, B), and result sequence mask of shape (T, B)









ctc_CER

Calculate the character error rate (CER) given ground truth targetseq and CTC decoding output resultseq

ctc_CER(resultseq, targetseq, resultseq_mask=None, targetseq_mask=None)






	resultseq: CTC decoding output, with shape (T1, B)


	targetseq: sequence ground truth, with shape (T2, B)


	return: tuple of (CER, TE, TG), in which TE is the batch-wise total edit distance, TG is the batch-wise total ground truth sequence length, and CER equals to TE/TG








          

      

      

    

  

    
      
          
            
  Dandelion's update module is mostly inherited from Lasagne [https://github.com/Lasagne/Lasagne], you're recommended to refer to Lasagne.updates document [http://lasagne.readthedocs.io/en/latest/modules/updates.html] for details.



          

      

      

    

  

    
      
          
            
  
History


version 0.14.4 [4-17-2018]

Rename updates.py with update.py




version 0.14.0 [4-10-2018]

In this version the Module's parameter interfaces are mostly redesigned, so it's incompatible with previous version.
Now self.params and self.self_updating_variables do not include sub-modules' parameters any more, to get all the parameters to be
trained by optimizer, including sub-modules' during training, you'll need to call the new interface function  .collect_params().
To collect self-defined updates for training, still call .collect_self_updates().


	MODIFIED: .get_weights() and .set_weights() traverse the parameters in the same order of sub-modules, so they're incompatible with previous version.


	MODIFIED: Rewind all trainable flags, you're now expected to use the include and exclude arguments in .collect_params() and
.collect_self_updates() to enable/disable training for certain module's parameters.


	MODIFIED: to define self-update expression for self_updating_variable, use .update attribute instead of previous .default_update


	NEW: add auto-naming feature to root class Module: if a sub-module is unnamed yet, it'll be auto-named by its instance name,
from now on you don't need to name a sub-module manually any more.


	NEW: add .set_weights_by_name() to Module class, you can use this function to set module weights saved by previous version of Dandelion










          

      

      

    

  

    
      
          
            
  
Tutorial III: Howtos


1) How to freeze a module during training like in Keras/Lasagne?

To freeze a module during training, use the include and exclude arguments of module's .collect_params() and .collect_self_updates() functions.


Example

class FOO(Module):
    def __init__(self):
        self.cnn0 = Conv2D(...)
        self.cnn1 = Conv2D(...)
        self.cnn2 = Conv2D(...)
        ....
        
# Now we will freeze cnn0 and cnn1 submodules during training
model    = Foo()
loss     = ...
params   = model.collect_params(exclude=['cnn0', 'cnn1'])
updates  = optimizer(loss, params)
updates.update(model.colect_self_updates(exclude=['cnn0', 'cnn1']))
train_fn = theano.function([...], [...], updates=updates, no_default_updates=False)













          

      

      

    

  

    
      
          
            
  .. Dandelion documentation master file, created by
sphinx-quickstart on Wed Apr 18 12:03:00 2018.
You can adapt this file completely to your liking, but it should at least
contain the root toctree directive.


Welcome to Dandelion's documentation!

Contents:

.. toctree::
:maxdepth: 2




Indices and tables


	:ref:genindex


	:ref:modindex


	:ref:search








          

      

      

    

  

    
      
          
            
  
Tutorial I: Sentence topic classification

The best way to understand how Dandelion works is through practical examples.

In the first part of this tutorial, you’ll be guided through model definition and train/test/predict function compiling with a practical sentence classification task.


Sentence Classification Task


	Objective: classify each sentence into different topic categories.


	Variant: single-tag classification vs multi-tag classification




The sentence classification task is to using neural network model to determine the topic of each sentence, i.e., what each sentence is talking about. For example: time, location, cause, action and result.

To fulfill the task, we’ll build a model basically based on RNN, LSTM specifically.




Model Definition - Modules

For the full model definition, check the following code snippet:

    import theano
    import theano.tensor as tensor
    from dandelion.module import *
    from dandelion.update import *
    from dandelion.functional import *
    from dandelion.util import gpickle

    class model(Module):
        def __init__(self, batchsize=None, input_length=None, Nclass=6, noise=(0.5, 0.2, 0.7, 0.7, 0.7)):
            super().__init__()
            self.batchsize = batchsize
            self.input_length = input_length
            self.Nclass = Nclass
            self.noise = noise

            self.dropout0 = Dropout(name='dropout0')
            self.dropout1 = Dropout(name='dropout1')
            self.dropout2 = Dropout(name='dropout2')
            self.dropout3 = Dropout(name='dropout3')
            self.dropout4 = Dropout(name='dropout4') 
            W = gpickle.load('word_embedding(6336, 256).gpkl')
            self.embedding = Embedding(num_embeddings=6336, embedding_dim=256, W=W, name='Embedding')
            self.lstm0 = LSTM(input_dims=256, hidden_dim=100, name='lstm0')
            self.lstm1 = LSTM(input_dims=256, hidden_dim=100, name='lstm1')
            self.lstm2 = LSTM(input_dims=200, hidden_dim=100, name='lstm2')
            self.lstm3 = LSTM(input_dims=200, hidden_dim=100, name='lstm3')
            self.lstm4 = LSTM(input_dims=200, hidden_dim=100, name='lstm4')
            self.lstm5 = LSTM(input_dims=200, hidden_dim=100, name='lstm5')
            self.dense = Dense(input_dims=200, output_dim=Nclass, name='dense')






All the neural network modules are defined in dandelion.module in Python. For the sentence classification task, the following four NN modules will be used: Dropout, Embedding, LSTM and Dense.

To define our model, we’ll need to subclass the Module class from dandelion.module. The Module class is the base class for all our NN modules. There’s no complex abstraction here, all Module class done is to define some convenient interfaces for model parameter manipulation and no more. The Module class is quite similar with Pytorch’s nn.Module class.

Now we define all the network modules as our model’s attributes, such as

    self.dropout0 = Dropout(name='dropout0')





You can drop the name here, it’s optional. However for possible parameter manipulation convenience later, we’d suggest giving a unique name for each network module here. (After version 0.14.0, you don't need to set the module name manually any more, they will be auto-named by the sub-module keys)

Note that all these definitions are done in the model’s __init__() part. Now we defined all the NN modules to be used in our model, but their relations, i.e., the network structure hasn’t been done. This part will be defined in model’s forward() and predict() functions later.

If you’re familiar with Lasagne or Keras, you’d notice that for LSTM module, Dandelion requires both the input dimension via input_dims and output dimension via hidden_dim meanwhile Lasagne or Keras would only require the output dimension, leaving the input dimension determined automatically by the framework. This is the cost you’d pay for greater flexibility by using Dandelion.




Model Definition - Structures

Now we’ll go through the network structure part. Usually a model needs to be trained first then it can be used in inference, so the network structure would involve these two different processes, i.e., training and inference.

We define the network structure for training in Model’s forward() function, as showed below.

    def forward(self, x):
        self.work_mode = 'train'
        x = self.dropout0.forward(x, p=self.noise[0], rescale=False)
        x = self.embedding.forward(x)         # (B, T, D)

        x = self.dropout1.forward(x, p=self.noise[1], rescale=True)
        x = x.dimshuffle((1, 0, 2))           # (B, T, D) -> (T, B, D)
        x_f = self.lstm0.forward(x, None, None, None)
        x_b = self.lstm1.forward(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x = pool_1d(x, ws=2, ignore_border=True, mode='average_exc_pad', axis=0)

        x = self.dropout2.forward(x, p=self.noise[2], rescale=True)
        x_f = self.lstm2.forward(x, None, None, None)
        x_b = self.lstm3.forward(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x = self.dropout3.forward(x, p=self.noise[3], rescale=True)
        x_f = self.lstm4.forward(x, None, None, None, only_return_final=True)
        x_b = self.lstm5.forward(x, None, None, None, only_return_final=True, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=1)

        x = self.dropout4.forward(x, p=self.noise[4], rescale=True)
        y = sigmoid(self.dense.forward(x))
        return y





Within the forward() function, we first set the work mode to train. This is an optional step, which will be explained later. Then the input text sequence is fed through a Dropout and Embedding module to convert integer indices into character embedding vectors.  After that are two LSTM modules with forward and backward scanning directions, resulting in a bidirectional LSTM. Output of this bi-LSTM is then subsampled along the time dimension, and then fed into another bi-LSTM. Note that for the latter bi-LSTM, we only need the last time frame as output. Finally a Dense module followed by a sigmoid activation gives the sentence classification result.

The network structure can be plotted as

[image: SC model structure]

Here the five Dropout modules are plotted with green color, means they only exist during training process.

    def predict(self, x):
        self.work_mode = 'inference'
        x = self.embedding.predict(x)

        x = x.dimshuffle((1, 0, 2))  # (B, T, D) -> (T, B, D)
        x_f = self.lstm0.predict(x, None, None, None)
        x_b = self.lstm1.predict(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x = pool_1d(x, ws=2, ignore_border=True, mode='average_exc_pad', axis=0)

        x_f = self.lstm2.predict(x, None, None, None)
        x_b = self.lstm3.predict(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x_f = self.lstm4.predict(x, None, None, None, only_return_final=True)
        x_b = self.lstm5.predict(x, None, None, None, only_return_final=True, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=1)

        y = sigmoid(self.dense.predict(x))
        return y





Now we define the network structure for inference in model’s predict() function, as showed above.

During inference process, the model’s network structure is simpler than in training. Note that there’s no Dropout modules here. The rest part of the predict() function is quite the same with forward() function, except that now all the modules’ predict() interface are called instead of the forward() interface as in model’s forward() function.




Unified Calling Interface

For users familiar with Keras or Lasagne, you might be confused that we define separate functions for both training and inference. In Keras/Lasagne, the common way is to define the model’s structure and use a flag parameter to tell the model to work in training mode or in inference mode.

The reason we do this is because it allows us to use different network structures for different purpose, i.e., the model’s network structure for training can be quite different from the structure for inference.

However the cost of this flexibility is that we’d have to define the network structure twice even though in most scenarios the model’s network structure is the same for both training and inference.

Fortunately we’ve considered this and provide a unified calling interface in Dandelion. For the network structures defined before, they can be re-written by the unified calling interface as follows

    def call(self, x, work_mode='train'):
        self.work_mode = work_mode
        x = self.dropout0(x, p=self.noise[0], rescale=False)
        x = self.embedding(x)         # (B, T, D)

        x = self.dropout1(x, p=self.noise[1], rescale=True)
        x = x.dimshuffle((1, 0, 2))           # (B, T, D) -> (T, B, D)
        x_f = self.lstm0(x, None, None, None)
        x_b = self.lstm1(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x = pool_1d(x, ws=2, ignore_border=True, mode='average_exc_pad', axis=0)

        x = self.dropout2(x, p=self.noise[2], rescale=True)
        x_f = self.lstm2(x, None, None, None)
        x_b = self.lstm3(x, None, None, None, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=2)

        x = self.dropout3(x, p=self.noise[3], rescale=True)
        x_f = self.lstm4(x, None, None, None, only_return_final=True)
        x_b = self.lstm5(x, None, None, None, only_return_final=True, backward=True)
        x = tensor.concatenate([x_f, x_b], axis=1)

        x = self.dropout4(x, p=self.noise[4], rescale=True)
        y = sigmoid(self.dense(x))
        return y





As we can see from the code above, now we do not call the sub-module’s forward() or predict() interface anymore. By setting the work_mode parameter, Dandelion will automatically call the sub-module’s forward() or predict() interface accordingly. Now we only need define the network structure for once, and use it for both training and inference.






Model Compiling

Theano requires compiling the computation graph before using it. The model compiling is actually more relevant to Theano than to Dandelion.

    print('  compiling train func')
    X            = tensor.imatrix('X')  
    Y            = tensor.fmatrix('Y')       
    output_score = model.forward(X)          
    B            = Y.shape[0]
    B            = tensor.cast(B, 'float32')
    loss         = tensor.sqrt(tensor.sum((output_score - Y)**2)) / B * 100                                        

    Y_out_positive = tensor.zeros_like(output_score)
    Y_out_positive = tensor.switch(output_score>0.5, Y, Y_out_positive)
    acc_positive   = tensor.sum(Y_out_positive) / tensor.sum(Y)

    Y_out_negative = tensor.zeros_like(output_score)
    Y_out_negative = tensor.switch(output_score<=0.5, 1.0 - Y, Y_out_negative)
    acc_negative   = tensor.sum(Y_out_negative) / tensor.sum(1.0- Y)

    params       = model.collect_params()
    updates      = adadelta(loss, params)
    updates.update(model.collect_self_updates())
    train_fn = theano.function([X, Y], [loss, acc_positive, acc_negative], updates=updates, no_default_updates=False)






	Model Calling
Here we call the model defined before by model.forward(). Of course you can also call the model by the unified calling interface as model.call(…, work_mode=‘train’)


	Parameters Collecting
Parameters to be trained by optimizer can be collected from the model by calling model.collect_params(), simply like that.


	Updates Collecting
In Dandelion, there’re two kinds of parameters: parameters to be updated by optimizer and parameters to be updated by other methods. The updates expression of the latter part of parameters can be collected by calling model.collect_self_updates(). Returned is a dict describing updates for each parameter accordingly.
After these 3 steps, now we can compile the training function by Theano simply by




    train_fn = theano.function([X, Y], [loss, acc_positive, acc_negative], updates=updates, no_default_updates=False)









          

      

      

    

  

    
      
          
            
  
Tutorial II: Write Your Own Module

In this tutorial, you’ll learn how to write your own neural network module with the help of Dandelion. Here we’ll design a module which gives the class centers for classification output. It’s a simple case for Dandelion yet not so intuitive for Lasagne or Keras users.

In image classification tasks, such as face recognition, document image classification, Imagenet contests, etc., we usually consider only the “positive” samples, i.e., we assume that given any input sample, it would be associated with at least one out of all the known class labels. However, in actual applications, we often also want the trained neural network model to be able to tell whether an input sample is an “outsider” or not.

To accomplish this task, we can add an extra “negative” class to the final layer of the network, and then train this augmented network by feeding it with all kinds of “negative” samples you can collect. It’s pure data-driven, so the bottleneck is how many “negative” samples can be collected.

Another way is algorithm-driven: we design a new network module to explore the intrinsic properties of the data, and use these “properties” to reject or accept an sample as “positive”. By this way we do not need to collect negative samples, and the model is more general and the most important: explainable.

The data intrinsic property to explore here is the class center for each positive class. The intuition is that if we can get the center of each class, then we can use the sample-center distance to reject or accept an sample as “positive”.

Now assume that the last layer of the neural network is a Dense module followed by a softmax activation which produces N class decisions. We’ll refer the input of this Dense module as feature of the input sample (extracted by the former part of the whole neural network). For plain network trained with only positive samples, the feature distribution can be typically visualized as

[image: fig1]


	A Discriminative Deep Feature Learning Approach for Face Recognitions. Yandong Wen, Kaipeng Zhang, Zhifeng Li and Yu Qiao. European Conference on Computer Vision (ECCV) 2016





Center Loss

Apparently the feature extracted by the plain model is not well centered, in other words, the feature distribution is not well-formed.

Ideally, to reject or accept one sample as a certain class, we can set a probability threshold so that any sample whose feature satisfies
𝑝(𝑓𝑗│𝐶𝑖)<𝑇𝑖 will be rejected as an “outsider” for this class with certainty 1−𝑇𝑖

But before we can do this, the distribution 𝑝(𝑓│𝐶_𝑖) must be known. To get this conditional distribution, we can either traverse all the train samples and use any probability estimation / modelling method to approximate the true distribution, or we can resort to the DL method by directly requiring the neural network to produce features satisfying predefined distributions.

The reason we can do this is because a neural network can be trained to emulate any nonlinear functions, and we can always transform a compact distribution into Gaussian by a certain function.

To restrain the neural network to extract Gaussian distributed features, we assume each class has a mean feature vector (i.e., center) 𝑓_𝜇𝑖 and require the model to minimize the distance between extracted feature and its corresponding center vector, i.e.,

min⁡‖𝑓𝑗−𝑓𝜇𝑖 ‖^2  𝑖𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑐𝑙𝑎𝑠𝑠 𝑖

We refer this objective as “center loss”, the details can be found in Ref. [A Discriminative Deep Feature Learning Approach for Face Recognition. Yandong Wen, Kaipeng Zhang, Zhifeng Li and Yu Qiao. European Conference on Computer Vision (ECCV) 2016]. The model is trained now with both the categorical cross entropy loss and the center loss as

min⁡ 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦+𝜆∗𝐶𝑒𝑛𝑡𝑒𝑟𝐿𝑜𝑠𝑠

[image: fig2]




Center Module

Now we’ll go through the code part to illustrate how the center loss can be actually computed. To compute the center loss, we need first to get the center estimation of each class. This is done through a new module referred as Center. Check the code snippet following.

class Center(Module):
    """
    Compute the class centers during training
    Ref. to "Discriminative feature learning approach for deep face recognition (2016)"
    """
    def __init__(self, feature_dim, center_num, alpha=0.9, center=init.GlorotUniform(), name=None):
        """
        :param alpha: moving averaging coefficient
        :param center: initial value of center
        """
        super().__init__(name=name)
        self.center = self.register_self_updating_variable(center, shape=[center_num, feature_dim], name="center")
        self.alpha = alpha

    def forward(self, features, labels):
        """
        :param features: (B, D)
        :param labels: (B,)
        :return: categorical centers
        """
        center_batch = self.center[labels, :]
        diff = (self.alpha - 1.0) * (center_batch - features)
        center_updated = tensor.inc_subtensor(self.center[labels, :], diff)
        self.center.default_update = center_updated
        return self.center

    def predict(self):
        return self.center






First, all our NN modules should subclass the root Module class, then we can use class methods and attributes to manipulate network parameters conveniently.

Second, define the module initialization in .__init__() part. Here we do two things: we register a center tensor as network parameter and initialize it with a Glorot uniform random numpy array. The center tensor is of shape (center_num, feature_dim), in which center_num should be equal to class number, and feature_dim is the dimension of extracted features by the network.

In Dandelion, the network parameters are divided into two categories:


	
	parameter to be updated by optimizer,






	
	parameter to updated by user defined expression.








The former parameters should be registered with class method .register_param(), and the latter parameters should be registered with class method . register_self_updating_variable().

Now we registered center tensor as self updating variable, its updating expression is given in .forward() function as self.center.default_update = center_updated. In Dandelion we use a specially named attribute . default_update to tell the framework that this parameter has an updating expression defined and the updating expression will be collected during Theano function compiling phase.

The .forward() function will be used for training, and .predict() function will be used for inference.

Basically, during training, the .forward() function computes moving averaging estimation of class centers; and during inference, we just use the stored center values as final estimated class centers. This is pretty much alike how BatchNorm’s mean and std are estimated and used.




Summary

To summary, to write your own module, you only need to do the following three steps:


	
	subclass Module class






	
	register your module’s parameters by .register_param() or . register_self_updating_variable() and initialize them






	
	define the .forward() function for training and .predict() function for inference








and that’s it!







          

      

      

    

  _images/SC_model.png
Dropout






_static/ajax-loader.gif





_images/center_1.png
£ 100 £ 100

Z z

3 50 g 50 3

T o 2 =1

=

% -50 ‘g -50 g
—

Ag-]OO .5-100

£.150 £.150

° °

<200 : <200 £

-200 -100 0 100 -200 -100 0 100
Activation of the Ist neuron Activation of the Ist neuron
(a) (b)

Fig. 2. The distribution of deeply learned features in (a) training set (b) testing set,
both under the supervision of softmax loss, where we use 50K/10K train/test splits.
The points with different colors denote features from different classes. Best viewed
in color.





_images/center_2.png
CEaANELII—S

CEaANELII—S

@ =1

Fig. 3. The distribution of deeply learned features under the joint supervision of soft-
max loss and center loss. The points with different colors denote features from different
classes. Different A lead to different deep feature distributions (o = 0.5). The white
dots (co, €1,...,co) denote 10 class centers of deep features. Best viewed in color.





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Dandelion
        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





